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Abstract
We propose a geometric growth model which interpolates between one-
dimensional linear graphs and small-world networks. The model undergoes a
transition from large to small worlds. We study the topological characteristics
by both theoretical predictions and numerical simulations, which are in
good accordance with each other. Our geometrically growing model is a
complementarity for the static WS model.

PACS numbers: 89.75.−k, 02.10.Ox, 89.75.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many real-life systems display both a high degree of local clustering and the small-world effect
[1–6]. Local clustering characterizes the tendency of groups of nodes to be all connected to
each other, while the small-world effect describes the property that any two nodes in the system
can be connected by relatively short paths. Networks with these two characteristics are called
small-world networks.

In the past few years, in order to describe real-life small-world networks, a number of
models have been proposed. The first and the most widely studied model is the simple and
attractive small-world network model of Watts and Strogatz (WS model) [7], which triggered
a sharp interest in the studies of the different properties of small-world networks such as the
WS model or its variations. Many authors tried to find more rigorous analytical results on the
properties of either the WS model or on its variants that were easier to analyze or captured
new aspects of small-worlds [8–16]. The WS model and its variants may provide valuable
insight into some real-life networks showing how real-world systems are shaped. However,
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Figure 1. Scheme of the growing network for the case of q = 0.5, showing the first four steps of
the iterative process. The dashed lines denote the removed edges.

the small-world effect is much more general; it is still an active direction of research to explore
other mechanisms producing small-world networks.

As known to us all, real systems have a common property of growth [17]. In particular,
the number of nodes in some real-life networks increases exponentially with time. The World
Wide Web, for example, has been increasing in size exponentially from a few thousand nodes
in the early 1990s to hundreds of millions today. To our knowledge, almost all previous
models of small-world networks were static (not growing)—they ignored an important aspect
of network growth. Therefore, it is interesting to establish an exponentially growing network
model for small-world networks, which undergoes a transition from a large to a small world
as the classic WS small-world model.

In this paper, we intend to fill the gap by proposing a simple geometric growth network
model controlled by a tunable parameter q. As in the WS model, by tuning the parameter q,
our model undergoes a phase transition with increasing number of nodes from a ‘large-world’
regime in which the average path length (APL) increases linearly with system size, to a ‘small-
world’ one where the APL increases logarithmically. We study analytically and numerically
the structural characteristics, which depend on the parameter q.

Our model is probably not as much a model of a real-world system as an example of vast
variety of structure within the class of networks defined by a degree distribution, but it is the
first geometrically growing model that exhibits similar phenomena as the famous WS model.
Thus, it may be helpful in establishing more realistic growing small-world models for real-life
systems in future research.

2. The network model

The network model is generated by decimating semi-ring, which is constructed in an iterative
way as shown in figure 1. We denote our network after t (t � 0) time steps by Nt . The
network starts from an initial state (t = 0) of two nodes, which are distributed on both ends
of a semi-ring and connected by one edge. For t � 1, Nt is obtained from Nt−1 as follows:
for each existing internode interval along the semi-ring of Nt−1, a new node is added and
connected to its both end nodes; at the same time, for each existing internode interval, with
probability q, we remove the edge linking its two end nodes, previously existing at step t − 1.
The growth process is repeated until the network reaches the desired size.

When q = 1, the network is reduced to a one-dimensional linear chain. For q = 0, no
edge is deleted, and the network grows deterministically, which allows one to exactly calculate
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its topological properties [18–31]. As we will show below that in the special case of q = 0
the network is small-world. Thus, varying q in the interval (0,1), we can study the crossover
between the one-dimensional regular linear graph and the small-world network.

Now we compute the number of nodes and edges of Nt . We denote the numbers of newly
added nodes and edges at step t by Lv(t) and Le(t), respectively. Thus, initially (t = 0),
we have Lv(0) = 2 nodes and Le(0) = 1 edge in N0. Let Nc(t) denote the total number of
internode intervals along the semi-ring at step t, then Nc(0) = 1. By construction, we have
Lv(t) = Nc(t − 1) for arbitrary t � 1. Note that, when a new node is added to the network,
an interval is destroyed and replaced by two new intervals; hence we have the following
relation: Nc(t) = 2Nc(t − 1). Considering the initial value Nc(0) = 1, we can easily get
Nc(t) = Lv(t + 1) = 2t . On the other hand, the addition of each new node leads to an addition
of two new edges with probability 1 and removal of one old edge with probability q, which
follows that Le(t) = (2 − q)Lv(t) = (2 − q)2t−1. Therefore, the number of nodes Vt and the
total of edges Et in Nt are

Vt =
t∑

tj =0

Lv(tj ) = 2t + 1 (1)

and

Et =
t∑

tj =0

Le(tj ) = (2 − q)2t + q − 1, (2)

respectively. The average node degree is then

〈k〉t = 2Et

Vt

= (4 − 2q) − 3 − 2q

2t + 1
. (3)

For large t and arbitrary q, it is small and approximately equal to 4 − 2q. Note that many
real-life networks are sparse in the sense that the number of edges in the network is much less
than Vt(Vt − 1)/2, the number of all possible edges [1–6].

3. Structural properties

Below we will find that the tunable parameter q controls all the relevant properties of the
model, including degree distribution, clustering coefficient and average path length.

3.1. Degree distribution

The degree distribution P(k) is defined as the probability that a randomly selected node has
exactly k edges. For q = 1, all nodes (except the initial two nodes created at step 0) have
the same number of connections 2; the network exhibits a completely homogeneous degree
distribution.

Next we focus the case 0 � q < 1. Let ki(t) denote the degree of node i at step t. If
node i is added to the network at step ti (ti � 1), then, by construction, ki(ti) = 2. In each of
the subsequent time steps, there are two intervals with one at either side of i. Each of the two
intervals will create a new node connected to i, and each edge connecting the end nodes of the
intervals could be considered to be deleted with probability q. Then the degree ki(t) of node i
satisfies the relation

ki(t) = ki(t − 1) + 2(1 − q). (4)
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Figure 2. Semilogarithmic graph of the cumulative degree distribution of the network N17 for
different q. All the networks have size 131 073. The solid lines are the analytic calculation values
given by equation (8).

It should be mentioned that equation (4) does not hold true for the two initial nodes created
at step 0. But when the network becomes large, these few initial nodes have almost no effect
on the structural characteristics. Considering the initial condition ki(ti) = 2, equation (4)
becomes

ki(t) = 2 + 2(1 − q)(t − ti). (5)

The degree of each node can be obtained explicitly as in equation (5), and we see that this
degree increases at each iteration. So it is convenient to obtain the cumulative distribution [4]

Pcum(k) =
∞∑

k′=k

P (k′), (6)

which is the probability that the degree is greater than or equal to k. An important advantage of
the cumulative distribution is that it can reduce the noise in the tail of probability distribution.
Moreover, for some networks whose degree distributions have exponential tails, P(k̃) ∼ e−k̃/κ ,
the cumulative distribution also has an exponential expression with the same exponent:

Pcum(k̃) =
∞∑

k′=k̃

P (k′) ∼
∞∑

k′=k̃

e−k′/κ ∼ e−k̃/κ . (7)

This makes exponential distributions particularly easy to spot experimentally, by plotting the
corresponding cumulative distributions on semilogarithmic scales.

Using equation (5), we have Pcum(k) = ∑∞
k′=k P (k) = P

(
t ′ � τ = t − k−2

2(1−q)

)
. Hence

Pcum(k) =
τ∑

t ′=0

Lv(t
′)

Vt

= 2

2t + 1
+

τ∑
t ′=1

2t ′−1

2t + 1
= 2− k−2

2(1−q) . (8)

The cumulative distribution decays exponentially with k. Thus the resulting network is an
exponential network. Note that many small-world networks including the WS model belong
to this class [10].

In order to confirm the analytical prediction of the cumulative degree distribution, we
performed numerical simulations of the networks. In figure 2, we report the simulation results
of the cumulative degree distribution for several values of q. From figure 2, we can see that the
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cumulative degree distribution decays exponentially, in agreement with the analytical results
and supporting a relatively homogeneous topology similar to most small-world networks
[10, 13–15].

3.2. Clustering coefficient

By definition, the clustering coefficient [7] Ci of a node i is the ratio of the total number ei of
edges that actually exist between all its ki nearest neighbors and the number ki(ki − 1)/2 of
all possible edges between them, i.e., Ci = 2ei/[ki(ki − 1)]. The clustering coefficient 〈C〉 of
the whole network is the average of all individual Ci’s.

For the case of q = 1, the network is a one-dimensional chain, the clustering coefficient
of an arbitrary node and their average value are both zero.

For the case of q = 0, using the connection rules, it is straightforward to calculate exactly
the clustering coefficient of an arbitrary node and the average value for the network. When
a new node i enters the network, ki and ei are 2 and 1, respectively. After that, if the degree
ki increases by 1, then i ′s new neighbor must connect to one of its existing neighbors, i.e., ei

increases by 1 at the same time. Therefore, ei equals to ki − 1 for all nodes at all steps. So
there exists a one-to-one correspondence between the degree of a node and its clustering. For
a node v of degree k, the exact expression for its clustering coefficient is 2/k, which indicates
that the local clustering scales as C(k) ∼ k−1. It is interesting to note that a similar scaling
has been observed empirically in a variety of real-life networks [24].

The power-law behavior of local clustering indicates a hierarchical and modular structure
of this particular small-world network. Note that a similar clustering property has been
previously observed in some other deterministic network models such as the pseudofractal
scale-free web (PSFW) proposed by Dorogovtsev, Goltsev and Mendes [19], which was
extended in [20, 21]. Although both this network and PSFW are hierarchical, and both of
them have small average path length, as shown in the next subsection, they belong to different
categories; our network is an exponential network while PSFW is a scale-free one.

Clearly, the number n(C, t) of nodes with clustering coefficient C =
1, 1

2 , 1
3 , . . . , 1

t−1 , 1
t
, 2

t+1 , is equal to Lv(t), Lv(t − 1), Lv(t − 2), . . . , Lv(2), Lv(1), Lv(0),
respectively. Therefore, the clustering coefficient spectrum of nodes is discrete. Using this
discreteness, it is convenient to work with the cumulative distribution of clustering coefficient
[19] as

Wcum(C) = 1

Vt

∑
C ′�C

n(C ′, t) = 2

(
1

2

)C

, (9)

where C and C ′ are the points of the discrete spectrum. The average clustering coefficient
〈C〉t can be easily obtained for arbitrary t:

〈C〉t = 1

Vt

[
t∑

i=1

1

i
· Lv(t + 1 − i) +

2

t + 1
· Lv(0)

]

� 1 · 1

2
+

1

2
· 1

22
+

1

3
· 1

23
+ · · · +

1

t
· 1

2t
+

2

t + 1
· 2

2t

=
t∑

i=1

1

i

(
1

2

)i

+
2

t + 1
· 2

2t
. (10)

For infinite t, 〈C〉 = − ln
(
1 − 1

2

) = ln 2 , which approaches a constant value 0.6931, and
so the clustering is high.
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Figure 3. The clustering coefficient C of the whole network as a function of q.

In the range 0 < q < 1, it is difficult to derive an analytical expression for the clustering
coefficient either for an arbitrary node or for their average. In order to obtain the result of
the clustering coefficient C of the whole network, we have performed extensive numerical
simulations for the full range of q between 0 and 1. Simulations were performed for network
N17 with size 131 073, averaging over 20 network samples for each value of q.

In figure 3, we plot the clustering coefficient C as a function of q. It is obvious that C
decreases continuously with increasing q. As q increases from 0 to 1, C drops almost linearly
from 0.6931 to 0. Note that although the clustering coefficient C changes linearly for all q,
we will show below that in the large limit of q, the average path length changes exponentially
as q . This is different from the phenomenon observed in the WS model where C remains
practically unchanged in the process of the network transition to a small world.

3.3. Average path length

We represent all the shortest path lengths of Nt as a matrix in which the entry dij is the geodesic
path from node i to node j , where the geodesic path is one of the paths connecting two nodes
with minimum length. A measure of the typical separation between two nodes in Nt is given
by the average path length d̄ t , also known as characteristic path length, defined as the mean
of geodesic lengths over all couples of nodes:

d̄ t = St

Vt (Vt − 1)/2
, (11)

where

St =
∑

i �=j,i∈Nt ,j∈Nt

dij (12)

denotes the sum of the chemical distances between two nodes over all pairs. For general q,
there are some difficulties in obtaining a closed formula for d̄ t . For q = 1 and q = 0, the
networks are deterministic, which allows one to calculate d̄ t analytically.

3.3.1. Case of q = 1. For this particular case, the network is a linear chain (graph) which
has two nodes with degree 1 at both ends of the chain and Vt − 2 nodes with degree 2 in the
middle. For convenience, we denote the total distances between all pair of nodes and average
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Figure 4. For q = 0, the network after t + 1 step iterations, Nt+1, is composed of two copies of Nt

denoted as N
(1)
t and N

(2)
t , which are connected to each other as above.

path length of a linear chain with n nodes as σ(n) and l(n), respectively. We label each node
in the linear graph with size n from one end to the other as v = 1, 2, . . . , n − 1, n. Then we
have the following equation:

σ(n + 1) = σ(n) + θn, (13)

where θn is defined as

θn =
n∑

i=1

di(n+1) =
n∑

i=1

i = n(n + 1)

2
. (14)

Then the solution of equation (13) is

σ(n) = σ(2) +
n−1∑
m=2

θm = 1 +
n−1∑
m=2

m(m + 1)

2

= 1 +
1

2

(
n−1∑
m=2

m2 +
n−1∑
m=2

m

)

= n(n − 1)(n + 1)

6
. (15)

Thus

l(n) = σ(n)

n(n − 1)/2
= n + 1

3
, (16)

which increases linearly with network size.

3.3.2. Case of q = 0. In the special case, the network has a self-similar structure that allows
one to calculate d̄ t analytically [32]. As shown in figure 4, the network Nt+1 may be obtained
by joining two copies of Nt , which are labeled as N

(α)
t with α = 1, 2. Then we can write the

sum St+1 as

St+1 = 2St + �t, (17)

where �t is the sum over all shortest paths whose endpoints are not in the same Nt branch.
The solution of equation (17) is

St = 2t−1S1 +
t−1∑
m=1

2t−m−1�m. (18)

The paths that contribute to �t must all go through at least one of the three edge nodes
(A,B,D) at which the two branches N

(1)
t and N

(2)
t are connected. Below we give the

analytical expression for �t , called the crossing paths.



11870 Z Zhang et al

We define

d tot
t ≡

∑
i∈N

(1)
t

diA,

dnear
t ≡

∑
i∈N

(1)
t

diA<diD

diA, V near
t ≡

∑
i∈N

(1)
t

diA<diD

1,

dmid
t ≡

∑
i∈N

(1)
t

diA=diD

diA, V mid
t ≡

∑
i∈N

(1)
t

diA=diD

1,

d far
t ≡

∑
i∈N

(1)
t

diA>diD

diA, V far
t ≡

∑
i∈N

(1)
t

diA>diD

1,

(19)

so that d tot
t = dnear

t + dmid
t + d far

t and Vt = V near
t + V mid

t + V far
t . By symmetry V near

t = V far
t .

Thus,

�t =
∑

i∈N
(1)
t ,j∈N

(2)
t

i,j �=A

dij =
∑

i∈N
(1)
t ,j∈N

(2)
t

i,j �=A,diA�diD

(diA + dAj ) +
∑

i∈N
(1)
t ,j∈N

(2)
t ,i,j �=A

diA>diD,djA�djB

(diA + dAj )

+
∑

i∈N
(1)
t ,j∈N

(2)
t ,i,j �=A

diA>diD,djA>djB

(diD + 1 + dBj )

=
∑

i∈N
(1)
t ,i �=A

diA�diD

[
(Vt − 1)diA + d tot

t

]

+
∑

i∈N
(1)
t ,i �=A

diA>diD

[(
V near

t + V mid
t − 1

)
diA + dnear

t + dmid
t

]

+
∑

i∈N
(1)
t ,i �=A

diA>diD

[
V near

t (diD + 1) + dnear
t

]

= (Vt − 1)
(
dnear

t + dmid
t

)
+

(
V near

t + V mid
t − 1

)
d tot

t

+
(
V near

t + V mid
t − 1

)
d far

t + V near
t

(
dnear

t + dmid
t

)
+ V near

t

(
dnear

t + V near
t

)
+ V near

t dnear
t . (20)

Having �t in terms of the quantities in equation (19), the next step is to explicitly determine
these quantities. We consider a node i ∈ N

(1)
t and the shortest-path distances to A and D,

i.e., diA and diD . After step ti when the node i was generated, the values of diA and diD do
not change at subsequent steps, since the shortest paths are always along the edges added
earliest. We see this in figure 5, where the nodes are labeled by the ordered pairs diA, diD , for
the first three iterative steps. We denote by at

m,m′ the number of nodes added at step t which
have diA = m, diD = m′. Since A and D are connected, m′ and m can differ by at most 1.
Thus for a given m there are three categories of nodes added at step t, respectively numbering
at

m,m+1, a
t
m,m and at

m+1,m. By symmetry at
m+1,m = at

m,m+1. The m,m′ values of nodes added at
step t depend on the neighbor nodes, which were added at previous steps. For example, there
is one node added at step t (t � 2) which is a nearest-neighbor of A; so this new node has
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Figure 5. The first three steps of the network with q = 0, with the nodes labeled by ordered pairs
denoting the shortest distance to the left and right end nodes.

m = 1,m′ = 2, giving at
1,2 = 1. Nodes with m = 1,m′ = 2 will in turn get neighbors with

m = 2,m′ = 3 in subsequent steps. The relationship between at
2,3 and ak

1,2 for k < t is

at
2,3 =

t−2∑
k=2

2ak
1,2 = 2(t − 3). (21)

Similarly,

at
3,4 =

t−2∑
k=4

2at
2,3 = 2(t − 4)(t − 5). (22)

Since nodes with distances m,m+ 1 do not appear before step t = 2m, the sum over ak
2,3 starts

at k = 4. Proceeding in this way, for general m � 1 and t � 2m,

at
m,m+1 =

t−2∑
k=2(m−1)

2ak
m−1,m = 2m−1(t − m − 1)!

(m − 1)!(t − 2m)!
. (23)

The value of at
0,1 is 1 for t = 0 and 0 for t > 0. Analogously, for general m � 2 and

t � 2m − 1,

at
m,m = 2m−1(t − m − 1)!

(m − 2)!(t − 2m + 1)!
. (24)

The value of at
1,1 is 1 for t = 1 and 0 for t > 1.

As derived in the appendix, we can obtain the quantities in equation (19),

V near
t =

t∑
k=1


k/2�∑
m=0

ak
m,m+1 =




1

3
2t +

1

3
, t is odd

1

3
2t +

2

3
, t is even

V mid
t =

t∑
k=1


k/2�∑
m=1

ak
m,m =




1

3
2t +

1

3
, t is odd

1

3
2t − 1

3
, t is even

dnear
t =

t∑
k=1


k/2�∑
m=0

mak
m,m+1 =




− 1

27
− 1

27
2t − 1

9
t +

1

9
t · 2t , t is odd

1

27
− 1

27
2t +

1

9
t +

1

9
t · 2t , t is even
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dmid
t =

t∑
k=1


k/2�∑
m=1

mak
m,m =




5

27
+

5

27
2t +

2

9
t +

1

9
t · 2t , t is odd

11

27
+

5

54
2t − 1

9
t +

1

18
t · 2t , t is even,

(25)

where 
x� denotes the largest integer � x and the different results for t odd and even are given
consecutively, and

d far
t =

t∑
k=1


k/2�∑
m=0

(m + 1)ak
m,m+1 = dnear

t + V near
t . (26)

Substituting the results of equation (25) into equation (20), we can obtain

�t = 1
18 [−5 − 3(−1)t + 12 · 2t + 14 · 22t + 12t · 4t ]. (27)

Substituting equation (27) for �m into equation (18), and using S1 = 3, we have

St =
{

3
2 · 2t + 1

18 (4 − 5 · 22t − 10 · 2t + 6t · 2t + 6t · 22t ), t is odd,

3
2 · 2t + 1

18 (6 − 5 · 22t − 10 · 2t + 6t · 2t + 6t · 22t ), t is even.
(28)

Inserting equation (28) into equation (11), we obtain the exact expressions for average path
length d̄ t which is of the form

d̄ t =




17 + 22−t − 5 · 2t + 6t (1 + 2t )

9(1 + 2t )
, t is odd,

17 + 3 · 21−t − 5 · 2t + 6t (1 + 2t )

9(1 + 2t )
, t is even.

(29)

In the infinite network size limit (t → ∞),

d̄ t � 2
3 t − 5

9 � 2
3 ln Vt − 5

9 . (30)

Thus, the average path length grows logarithmically with increasing size of the network. This
logarithmic scaling of d̄ t with network size, together with the large clustering coefficient
obtained in the preceding section, shows that in the case of q = 0 the graph is a small-world
network.

3.3.3. Case of 0 < q < 1. For 0 < q < 1, in order to obtain the variation of the average path
length with the parameter q, we have performed extensive numerical simulations for different
q between 0 and 1. Simulations were performed for network N15 with size 16 385, averaging
over 20 network samples for each value of q. In figure 6, we plot the average path length as a
function of q. We observe that, when q is decreased from 1 to 0, the average path length drops
drastically from a very high value a small one, which predicts that a phase transition from a
large world to a small world occurs. This behavior is similar to that in the WS model.

Why is the average path length low for small q? The explanation is as follows. The older
nodes that had once been the nearest neighbors along the semi-ring are pushed apart as new
nodes are positioned in the interval between them. From figure 1 we can see that when new
nodes enter into the networks, the original nodes are not near but, rather, have many newer
nodes inserted between them. When q is small, the network growth creates enough ‘shortcuts’
(i.e. long-range edges) attached to old nodes, which join remote nodes along the semi-ring as
in the WS model [7]. These shortcuts drastically reduces the average path length, leading to a
small-world behavior.



A geometric growth model interpolating between regular and small-world networks 11873

Figure 6. Graph of the dependence of the average path length on the tunable parameter q.

4. Conclusions

In summary, we have presented and studied a one-parameter model of the time evolution of
geometrically growing networks. The presented model interpolates between one-dimensional
regular chains and small-world networks, which allow us to explore the crossover between
the two limiting cases. We have obtained the analytical and numerical results for the degree
distribution and clustering coefficient, as well as the average path length, which are determined
by the model parameter q. The observed topological behaviors are similar to those in the WS
model.

Our model may provide a useful tool to investigate the influence of the clustering
coefficient or average path length in different dynamics processes taking place on networks. In
addition, using the idea presented here, we can also establish a scale-free network model which
undergoes two interesting phase transitions: from a large world to a small world, and from a
fractal topology to a non-fractal structure [33–35]. The details will be published elsewhere.
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Appendix. Derivations of V near
t and dnear

t

In this appendix, we give the computation details of V near
t and dnear

t , respectively. Other
quantities in equation (19) can be derived analogously. Here we only address the case of even
t = 2T (T is positive integer). For odd t, we can proceed in the same way.
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First, we compute V near
t . We rewrite at

m,m+1 and at
m,m as{

at
m,m+1 = 2m−1Cm−1

t−m−1, 2m � t;
at

m,m = 2m−2Cm−2
t−m−1, 2m � t + 1.

(A.1)

For even t = 2T , we have

V near
t =

t∑
k=1

∑
2m�k

ak
m,m+1(m � 1) + 1(A itself)

=
T∑

m=1

2T∑
k=2m

ak
m,m+1 + 1

=
T∑

m=1

2T∑
k=2m

2m−1Cm−1
k−m−1 + 1

=
T∑

m=1

2m−1
2T∑

k=2m

Cm−1
k−m−1 + 1. (A.2)

To find
∑2T

k=2m Cm−1
k−m−1, we use the approach based on generating functions [36]. We define

G1(x) =
2T∑

k=2m

(1 + x)k−m−1, (A.3)

and denote by z the coefficient of power of xm−1 in G1(x). Then, we have z = ∑2T
k=2m Cm−1

k−m−1.
At the same time, we can sum the items on the right-hand side of equation (A.3) and obtain
G1(x) as

G1(x) = 1 − (1 + x)2T −2m+1

1 − (1 + x)
(1 + x)m−1

= (1 + x)2T −m − (1 + x)m−1

x
. (A.4)

From equation (A.4), it is obvious that the coefficient of power of xm−1 in G1(x) is Cm
2T −m,

thus z = ∑2T
k=2m Cm−1

k−m−1 = Cm
2T −m. Then equation (A.2) can be written as

V near
t =

T∑
m−1

2m−1Cm
2T −m + 1. (A.5)

All that is left to obtain V near
t is to evaluate the sum in equation (A.5), which is denoted as u.

In order to find u, we define

G2(x) =
T∑

m=1

2m−1(1 + x)2T −mxT −m. (A.6)

Then u exactly equals the coefficient of the power of xT in G2(x). By summing over all m,
we get G2(x) as

G2(x) = 2T (1 + x)T − xT (1 + x)2T

(1 − x)(x + 2)

= 1

3

(
1

1 − x
+

1

x + 2

)
[2T (1 + x)T − xT (1 + x)2T ]. (A.7)
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And since

1

1 − x
= 1 + x + x2 + · · · =

∞∑
t=0

xt

and

1

x + 2
= 1

2

∞∑
t=0

(
−1

2
x

)t

,

we have u = 1
3 22T − 1

3 . Hence

V near
t = u + 1 = 1

3
2t +

2

3
, (A.8)

as shown in equation (25).
Next, we compute dnear

t based on a similar derivation process of V near
t . We rewrite dnear

t

in the form

dnear
t =

t∑
k=1

∑
2m�k

mak
m,m+1(m � 1)

=
T∑

m=1

m2m−1Cm
2T −m. (A.9)

After above simplification, what is left is to find the sum over all m, which we denote as QT .
Then

QT =
T∑

m=1

m2m−1Cm
2T −m

=
T∑

m=1

2m−1(2T − m)Cm−1
2T −m−1

=
T∑

m=1

2m−1(2T − 1)Cm−1
2T −m−1 −

T∑
m=1

2m−1(m − 1)Cm−1
2T −m−1

= 1

3
(2T − 1)

(
22T −1 + 1

) − 2QT −1. (A.10)

Making using of Q1 = 1, equation (A.10) can be solved inductively,

QT = (−2)T −1Q1 +
T −1∑
m=1

(−2)T −m−1 1

3
(2m + 1)(22m+1 + 1)

= 1

27
− 1

27
4T +

2

9
T +

2

9
T 4T , (A.11)

as given in equation (25).
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